

Reaching a Target inside a Denied Area: What is the Optimal Control Strategy?

Sheng Cheng, Nuno Martins, Angie Salles, and Cynthia Moss

Motivation Hunting phases capture Approach Buzz Bat's buzz in the capture phase resembles open-loop control of a mobile agent in a

Research Goals

Denied area is generalized to time-costly

denied area.

area.

- 1. Understand how to control a mobile agent to reach a target enclosed within a denied area.
- 2. Develop a systematic method to find the optimal control strategy to perform such task.
- 3. Compare trajectories from theory to trajectories from bat experiments.

Experiments: Bat vs. Denied Area

- Artificial denied area with adjustable sizes using white noise
- Success capture defined as bat's distance to the meal worm (at origin) ≤ 10cm
- Observation: bat's trajectories inside the denied area are not straight lines.

Theoretical Study I: Deterministic Problem¹

Formulation: a two-stage optimal control problem with a specific time cost in the inner stage

Method: augmenting the inner stage subproblem as the terminal performance index of the outer stage

Key: find the optimal switching position and the optimal terminal position

Difficulty: a nonconvex subproblem

We found the *solution* and proposed an *algorithm* generating the optimal control by sequentially solving subproblems

Results: controller successfully steers the mobile agent to the target in simulations

Target Area Denied Area Mol age Denied Area Denied Area Target Area -4 -2 0 2 4 Area Denied Area Denied Area Are

Theoretical Study II: Perturbed Problem

Perturbed trajectories

Denied Area

Target Area

Mobile agent

Formulation: perturbations bounded in convex polytopes

Challenges with perturbation:

- 1. Stage switching at improper positions
- 2. Target reaching failures

Method:

- 1. Trajectory planning with predicted sets
- 2. Variable horizon Model Predictive Controller
 Solution: solving for a local minimum
 using YALMIP

Result: provable guarantees on proper stage switching and target reaching

Animation

planned trajectories

1 This work is in the paper: S. Cheng and N. Martins, "Reaching a Target in a Time-costly Area Using Two-stage Optimal Control Method", in progress.

Related Work: Optimal Sensor Scheduling for Station Keeping in Denied Environments

GPS-denied region

Motivation: monitoring of large structures

- GPS positioning unavailable in denied region
- Extra costs for agents to request position outside the denied region

Formulation:

- Modelling agent's position as a random Desired position walk
- Choosing cost as the infinite-time average of the expectation values of stage costs at each time
- The agent returns to the desired position once an observation is made.

This work is in the paper: E. Arvelo, N. Martins, "Optimal Sensor Scheduling for Station Keeping in Denied Environments", submitted

